

LABORATORY PERFORMANCE REPORT

In accordance with

BS EN 1177:2018 - Determination of Critical Fall Height

Sample Reference PAG 95mm EPDM Rubber Pad

Report Number 18983/1151

Report Status Final

Issue Date 30/08/2018

Client PAG Flooring Systems Ltd **Bahnhofstrasse 26** D-38176 Wendeburg **Germany**

FOREWORD

- This report has been prepared by Sports Labs limited with all reasonable skill, care and diligence within the terms of the contract with the Client and within the limitations of the resources devoted to it.
- 2. This report is confidential to the Client and Sports Labs Limited accepts no responsibility whatsoever to third parties to whom this report, or any part thereof, is made known. Any such party relies upon the report at their own risk.
- 3. This report shall not be used for engineering or contractual purposes unless signed by the Author and the Checker and unless the report status is "Final".

Sports Labs Ltd 1 Adam Square, Brucefield Industry Park Livingston EH54 9DE Scotland, United Kingdom

Tel: +44(0)1506 444 755 Email: info@sportslabs.co.uk Web: www.sportslabs.co.uk

Israel

TurkeySouth Africa

Holland Norway

South America

England, United Kingdom Belgium Tel: +44 (0)845 603 5019

43 Timber Lane

Email: Nick.smith@propitch.online Web: www.propitchsystem.co.uk

Woburn, Bedfordshire MK17 9PL

1.0 INTRODUCTION

We refer to the sample of playground surfacing delivered to our Laboratory. The client requested testing to be carried out in accordance with the requirements of BS EN 1177:2018 - Determination of Critical Fall Height.

C. Mehose

Prepared Craig Melrose

By Laboratory Co-ordinator

30/08/2018

Checked Sean Ramsay

By Laboratory Director

30/08/2018

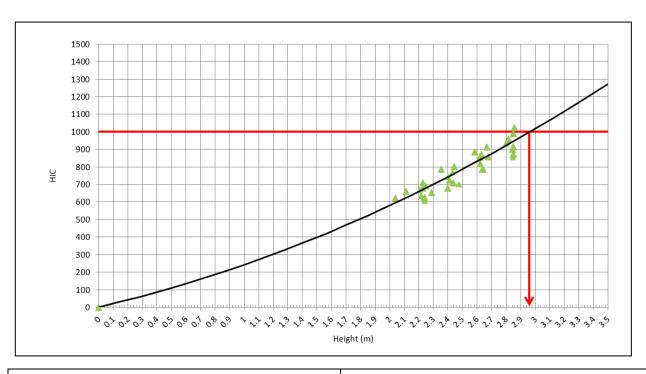
TEST DETAILS							
System Name	PAG 95mm EPDM Rubber Pad						
Test Condition	Dry						
Surface Temperature (°C)	23.8 °C						
Air Temperature (°C)	22.4 °C						
Relative Humidity (%)	48 %						
Fixing Method	Self Weighted						
Substrate	Concrete						
Shockpad type	EPDM Rubber Pad						
Total Depth (mm)	95 mm						
Infill Type	n/a						
Infill moisture content at test (%)	n/a						

2.0 TEST DETAILS

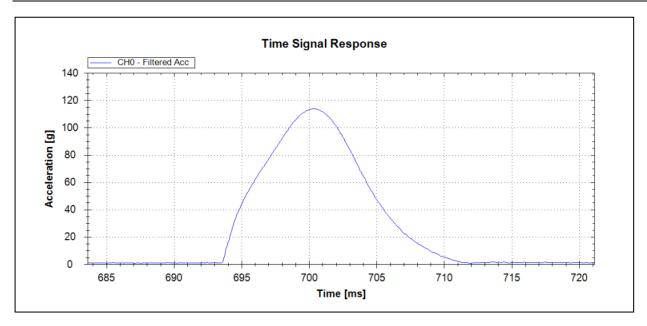
- 2.1 The test specimen was prepared in accordance with the manufacturer's instructions.
- 2.2 The specimens were tested in the conditions and temperatures described in BS EN 1177: 2008 to the prefabricated tile method.

3.0 TESTING

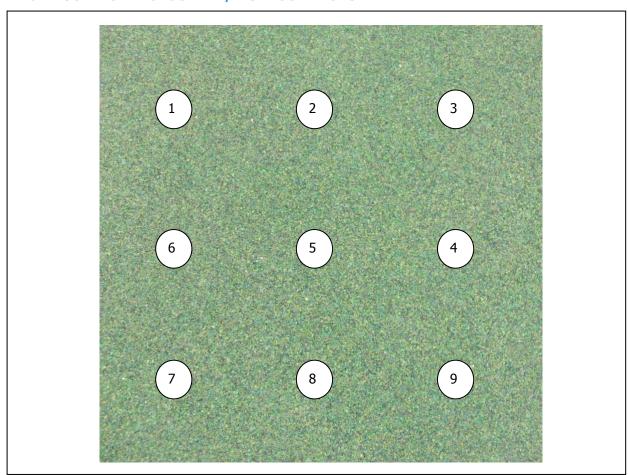
3.1 Determination of Critical Fall Height – BS EN 1177: 2008.


4.0 TEST RESULTS

4.1 Detailed test results are given overleaf in tabular format.


3.0 HIC (CRITICAL FALL HEIGHT) TEST RESULTS

Test Results	Drop Test 1			Drop Test 2			Drop Test 3		
	Drop Height (m)	T ₂ -T ₁	HIC	Drop Height (m)	T ₂ -T ₁	HIC	Drop Height (m)	T ₂ -T ₁	HIC
	2.815	16	959	2.858	16	1023	2.845	17	902
	2.667	17	914	2.584	16	886	2.677	17	858
	2.354	17	787	2.229	17	710	2.438	18	708
	2.113	17	661	2.039	17	623	2.288	18	655
Test Results	Drop Test 4			Drop Test 5			Drop Test 6		
	Drop Height (m)	T ₂ -T ₁	HIC	Drop Height (m)	T ₂ -T ₁	HIC	Drop Height (m)	T ₂ -T ₁	HIC
	2.851	17	915	2.85	17	989	2.849	18	874
	2.621	18	817	2.617	17	856	2.638	18	788
	2.218	18	636	2.445	17	802	2.4	18	678
	2.411	18	724	2.227	18	680	2.241	19	626
Test Results	Drop Test 7			Drop Test 8		Drop Test 9			
	Drop Height (m)	T ₂ -T ₁	HIC	Drop Height (m)	T ₂ -T ₁	HIC	Drop Height (m)	T ₂ -T ₁	HIC
	2.798	17	933	2.849	18	857	2.809	16	946
	2.629	17	863	2.647	18	785	2.631	17	876
	2.401	17	746	2.474	19	701	2.431	17	770
	2.209	18	670	2.242	19	609	2.25	17	692



Calculated Critical Fall Height Value 2.9 m

4.0 SURFACE PHOTOGRAPH/TEST LOC ATIONS

5.0 LAYER PHOTOGRAPH

End of Report